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Abstract. Sharp bounds for the volume of a convex body are obtained
in terms of its surface area and other quermassintegrals. These bounds
are consequences of, on the one hand, inequalities for inner parallel
bodies involving mixed volumes and, on the other hand, inequalities
which relate a convex body to its inner parallel bodies, its kernel and
its form body.

1. Introduction

Let Kn be the set of all convex bodies, i.e., compact convex sets in the
Euclidean space Rn, and let Kn

0 be the subset of Kn consisting of all convex
bodies with non-empty interior. A convex body K is called strictly convex
if its boundary bdK does not contain a line segment, and regular if the
supporting hyperplane to K at any x ∈ bd K is unique. Let Bn be the n-
dimensional unit ball. The volume of a set M ⊂ Rn, i.e., its n-dimensional
Lebesgue measure, is denoted by V(M).

For two convex bodies K ∈ Kn and E ∈ Kn
0 and a non-negative real

number λ the outer parallel body of K (relative to E) at distance λ is the
Minkowski sum K + λE. For −r(K;E) ≤ λ ≤ 0 the inner parallel body of
K (relative to E) at distance |λ| is the set

Kλ = {x ∈ Rn : |λ|E + x ⊂ K},

where the relative inradius r(K;E) of K with respect to E is defined by

r(K;E) = sup{r : ∃x ∈ Rn with x + r E ⊂ K}.

When the gauge body E = Bn, r(K;Bn) = r(K) is the classical inradius
(see [5, p. 59]). Clearly if λ = 0 the original body K is obtained. Notice
that K−r(K;E) is the set of relative incenters of K, usually called kernel of
K with respect to E. The dimension of K−r(K;E) is strictly less than n (see
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[5, p. 59]). Inner parallel bodies and their properties have been studied in
[3, 7, 8, 10, 11, 12, 13, 14] among others.

The so called relative Steiner formula [18] states that the volume of the
outer parallel body K + λE is a polynomial of degree n in λ ≥ 0,

(1.1) V(K + λE) =
n∑

i=0

(
n

i

)
Wi(K;E)λi,

where the coefficients Wi(K;E) are the relative quermassintegrals of K, and
they are particular cases of the more general mixed volumes (see Section 2
for definitions) for which we refer to [17, s. 5.1]. In particular, we have
W0(K;E) = V(K) and Wn(K;E) = V(E).

The well-known Bonnesen-Blaschke inequality for planar convex bodies
K ∈ K2 and E ∈ K2

0 establishes that

(1.2) W1(K;E)2 −V(K)V(E) ≥ V(E)2

4
(R(K;E)− r(K;E))2

where R(K;E) = 1/r(E;K) is called the circumradius of K with respect to
E. Again for E = Bn, R(K;Bn) = R(K) is the classical circumradius. This
inequality was first proved by Bonnesen in [4] when E = B2, obtaining the
classical one

P(K)2 − 4πV(K) ≥ π2(R(K)− r(K))2,

where P denotes the perimeter of K. In [1] Blaschke generalized it to an
arbitrary gauge body E ∈ K2

0.
Inequality (1.2) is a consequence of the more general inequality

(1.3) V(K)− 2W1(K;E)x + V(E)x2 ≤ 0

for r(K;E) ≤ x ≤ R(K;E). Equality in (1.3) holds for sausage bodies, i.e.,
convex bodies which are the Minkowski sum of a (possibly degenerate) seg-
ment and a dilation of E. An extension of Bonnesen’s inradius inequality to
higher dimensions was conjectured by Wills [19] and proved simultaneously
by Bokowski [2] and Diskant [9] for E = Bn, and by Sangwine-Yager [15]
for a general gauge body E with interior points:

(1.4) V(K)− nr(K;E)W1(K;E) + (n− 1)r(K;E)nV(E) ≤ 0.

In fact, in [15] Sangwine-Yager proved a much more general result, bounding
the volume of every inner parallel body of K in terms of V(K), W1(K;E),
W2(K;E) and some mixed volumes involving inner parallel bodies, from
which (1.4) follows as a consequence. She also provided sufficient conditions
for equality.

In [6], Brannen proved a strengthening of the Wills conjecture by intro-
ducing in the inequality the quermassintegrals of the kernel K−r(K;E). This
last result was improved in [13, Theorem 2.3] where also equality conditions
were provided. In the proofs of these results a crucial use of the known
results about inner parallel bodies is made.
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In this paper we provide new inequalities for the volume of a convex body
in terms of its quermassintegrals, using also the technique of inner parallel
bodies. We will also show that equality conditions rely on the decomposition
of the convex body through its kernel. These results will strengthen the Wills
conjecture (1.4).

The paper is organized as follows. In Section 2 we provide the necessary
background, such as definitions and known results which will be needed, and
state the main results. Section 3 contains the proofs of these results as well
as some consequences of them.

2. Background and main results

In order to state our main results we need the following definitions and
notation.

For convex bodies K1, . . . ,Km ∈ Kn and real numbers λ1, . . . , λm ≥ 0,
the volume of the linear combination λ1K1 + · · ·+ λmKm is expressed as a
polynomial of degree n in the variables λ1, . . . , λm,

V
(
λ1K1 + · · ·+ λmKm

)
=

m∑
i1=1

· · ·
m∑

in=1

V(Ki1 , . . . ,Kin)λi1 · · ·λin ,

whose coefficients V(Ki1 , . . . ,Kin) are the mixed volumes of K1, . . . ,Km.
This formula (and hence the mixed volumes) extends the relative Steiner
formula (1.1) (relative quermassintegrals).

A vector u ∈ Sn−1 is an r-extreme normal vector of K, 0 ≤ r ≤ n − 1,
if it cannot be written as u = u1 + · · ·+ ur+2, with ui linearly independent
normal vectors at one and the same boundary point of K. In particular we
denote the set of 0-extreme normal vectors of K by U0(K). A support plane
is said to be r-extreme if its outer normal vector is r-extreme. The (relative)
form body of a convex body K ∈ Kn

0 with respect to E ∈ Kn
0 , denoted by K∗,

is defined as (see e.g. [8])

K∗ =
⋂

u∈U0(K)

{
x : 〈x, u〉 ≤ h(E, u)

}
.

Form bodies belong to the wider class of the so called tangential bodies. A
convex body K ∈ Kn containing E ∈ Kn

0 is called a p-tangential body of E,
p ∈ {0, . . . , n− 1}, if each (n− p− 1)-extreme support plane of K supports
E. Notice that the construction of the form body of a convex body K with
respect to E ∈ Kn

0 yields that it is always an (n− 1)-tangential body of E.
There is a very close connection between inner parallel bodies and tangential
bodies for which we refer to [17, pp. 136–137].

We will need some relations between inner parallel bodies, the form body
and the kernel of a convex body. From now on and for the sake of brevity
we denote r(K;E) by r.

From the definition of inner parallel body for every −r ≤ λ ≤ 0, it follows
that K−r+(r+λ)E ⊆ Kλ with equality for all λ if and only if K = K−r+rE.
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In [14, Lemma 4.4] it is shown that clU0(Kλ) ⊆ U0(K). Thus, for−r < λ ≤ 0
the relation K∗

λ ⊇ K∗ holds, where K∗
λ is the form body of Kλ. Moreover,

it is known (see [14, Lemma 4.8]) that it always holds

K ⊇ Kλ + |λ|K∗

for any K ∈ Kn, E ∈ Kn
0 and all −r ≤ λ ≤ 0.

In [13, Theorem 2.2] convex bodies K ∈ Kn satisfying K = Kλ+|λ|K∗ for
every −r ≤ λ ≤ 0 are characterized as special tangential bodies of K−r +rE.
We include the result here for completeness.

(2.1)
Let E ∈ Kn

0 be regular. Then K = Kλ+|λ|K∗ for every−r ≤ λ ≤ 0
if and only if K is a tangential body of K−r + rE so that for all
−r ≤ λ ≤ 0, the condition U0(K) = U0(Kλ + K∗) is satisfied.

This result also shows that in order to have the decomposition K = Kλ +
|λ|K∗, for −r ≤ λ ≤ 0, it is enough to have it just for λ = −r.

We have the following inclusions which we will need for the proofs of the
main results

(2.2) K−r + (r + λ)K∗ ⊆ K−r + (r + λ)K∗
λ ⊆ Kλ

for −r < λ ≤ 0.
It is known that the function V(λ) := V(Kλ) defined on −r ≤ λ ≤ 0 is

differentiable and V′(λ) = nW1(Kλ;E). Its corresponding integral form

(2.3) V(K) = n

∫ 0

−r
W1(Kλ;E)dλ

is a key element in the proofs of the results.
First, we will prove the following upper bound for the volume of a convex

body in terms of the first quermassintegral and a finite sum of mixed volumes
involving K, its kernel K−r, its form body K∗ and the gauge body E. This
result strengthens the Wills conjecture (1.4) (see Remark 3.1).

Theorem 2.1. Let K ∈ Kn, E ∈ Kn
0 and r be the relative inradius of K

with respect to E. Then

V(K) ≤ nW1(K;E)r

− n

n−2∑
k=0

k∑
j=0

(
k
j

)
ck,j

V
(
K−r[j],K

∗
[k−j +1],K [n−k−2], E

)
rk−j+2,

(2.4)

where ck,j = (k − j + 1)(k − j + 2). If K = K−r + rK∗ equality holds. If E
is regular and strictly convex and equality holds then K is a tangential body
of K−r + rE.

This result is a direct consequence of the following more general one.
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Theorem 2.2. Let K ∈ Kn, E ∈ Kn
0 and r be the relative inradius of K

with respect to E. Then for −r ≤ λ ≤ 0

V(Kλ) ≤ nW1(K;E)(r + λ)

+ n
n−2∑
k=0

k∑
j=0

[ (
k
j

)
ck,j

V
(
K−r[j],K

∗
[k−j +1],K [n−k−2], E

)
[
(k − j + 1)λ− r

]
(r + λ)k−j+1

]
.

(2.5)

If K = K−r + rK∗, then equality holds. If E is regular and strictly convex
and equality holds for some −r < λ ≤ 0, then K is a tangential body of
K−r + rE.

Notice that Theorem 2.1 is obtained by taking λ = 0 in Theorem 2.2.
Next we use a technique used by Diskant [9] and Brannen [6] to prove the

following inequality.

Theorem 2.3. Let K ∈ Kn, E ∈ Kn
0 and r be the relative inradius of K

with respect to E. Then
(2.6)

V(K) ≤ nW1(K;E)r− n
n−1∑
j=0

(
n− 1

j

)
j

j + 1
V
(
K−r[n−j −1],K∗

[j], E
)
rj+1.

If K = K−r + rK∗ equality holds.

This result is a consequence, by taking λ = 0, of the following more
general result, which provides bounds for the volume of the whole family of
inner parallel bodies of K.

Theorem 2.4. Let K ∈ Kn, E ∈ Kn
0 and r be the relative inradius of K

with respect to E. Then for all −r < λ < 0

V(Kλ) ≤ nW1(K;E)(r + λ)

+ n
n−1∑
j=0

(
n− 1

j

)
V
(
K−r[n−j −1],K∗

[j], E
) [(r+λ)j+1

j + 1
− rj(r+λ)

]
.

(2.7)

If K = K−r + rK∗ we get equality.

3. Proofs of the main results

For the proof of Theorem 2.2, we will need the following inequality con-
tained in [13, Theorem 2.3]. For i = 0, . . . , n− 1 and −r ≤ λ ≤ 0,

(3.1) Wi(Kλ;E) ≤ Wi(K;E)− |λ|
n−i−1∑
k=0

V
(
Kλ[k],K [n−i−k−1],K∗, E[i]

)
.
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If K = K−r + rK∗ then equality holds in all the inequalities. Conversely,
if E is regular and strictly convex and equality holds in (3.1) for some
i ∈ {0, . . . , n− 1} then K is a tangential body of K−r + rE.

Now we deal with the proofs of the main results.

Proof of Theorem 2.2. First we consider inequality (3.1) for the case of W1,
i.e., for every −r ≤ µ ≤ 0

W1(Kµ;E) ≤ W1(K;E)− |µ|
n−2∑
k=0

V
(
Kµ[k],K [n−k−2],K∗, E

)
.

Using the integral form of the volume (2.3), we can integrate the inequality
with respect to µ and obtain that

1
n

V(Kλ) =
∫ λ

−r
W1(Kµ;E)dµ

≤
∫ λ

−r

(
W1(K;E)− |µ|

n−2∑
k=0

V
(
Kµ[k],K [n−k−2],K∗, E

))
dµ

≤ W1(K;E)(r + λ) +
∫ λ

−r

(
µ

n−2∑
k=0

V
(
Kµ[k],K [n−k−2],K∗, E

))
dµ.

(3.2)

Notice that inside the integral we have mixed volumes depending on µ where
at least three different convex bodies are involved. In order to bound these
ones we observe that (2.2) and the monotonicity of mixed volumes (see e.g.
[17, p. 277]) yield

V
(
Kµ[k],K [n−k−2],K∗, E

)
≥ V

(
K−r + (r + µ)K∗

[k],K [n−k−2],K∗, E
)

and so, using the linearity of the mixed volumes (see e.g. [17, p. 279]), the
integral above can be bounded as follows:∫ λ

−r

(
µ

n−2∑
k=0

V
(
Kµ[k],K [n−k−2],K∗, E

))
dµ

≤
∫ λ

−r

(
µ

n−2∑
k=0

V
(
K−r + (r + µ)K∗

[k],K [n−k−2],K∗, E
))

dµ

=
∫ λ

−r

n−2∑
k=0

k∑
j=0

(
k

j

)
µ(r + µ)k−jV

(
K−r[j],K

∗
[k−j],K [n−k−2],K∗, E

)
dµ

=
n−2∑
k=0

k∑
j=0

(
k

j

)
V
(
K−r[j],K

∗
[k−j +1],K [n−k−2], E

) ∫ λ

−r
µ(r + µ)k−jdµ.

Since ∫ λ

−r
µ(r + µ)k−jdµ =

[
(k − j + 1)λ− r

]
(r + λ)k−j+1

ck,j
,
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plugging this in (3.2) we get the announced bound for the volume.
If K = K−r + rK∗, then it is clear that equality holds, since in this case

Kλ = K−r + (r + λ)K∗. If E is regular and strictly convex and equality
holds in (2.5) for some −r < λ ≤ 0, then it also holds in (3.1). Thus, from
[13, Theorem 2.3] it follows that K is a tangential body of K−r + rE. �

As a corollary of inequality (2.4) we obtain the following strengthening of
Wills’ conjecture (1.4).

Corollary 3.1. Let E ∈ Kn
0 , K ∈ Kn and r be the relative inradius of K

with respect to E. Then

(3.3) V(K) ≤ nW1(K;E)r− n

n−2∑
k=0

Wk+2(K;E)
rk+2

(k + 1)(k + 2)
.

Proof. Using Theorem 2.1, since E ⊂ K∗ we obtain that
V(K) ≤ nW1(K;E) r

− n

n−2∑
k=0

k∑
j=0

(
k

j

)
V
(
K−r[j], E[k−j +2],K [n−k−2]

)rk−j+2

ck,j
.

Taking just the summands corresponding to j = 0 for every k we get the
desired bound for the volume:

V(K) ≤ nW1(K;E)r− n

n−2∑
k=0

V
(
K [n−k−2], E[k+2]

) rk+2

(k + 1)(k + 2)

= nW1(K;E)r− n
n−2∑
k=0

Wk+2(K;E)
rk+2

(k + 1)(k + 2)
. �

Remark 3.1. Observe that since rE ⊂ K, the monotonicity of the mixed
volumes yields that rnV(E) ≤ riWi(K;E) ≤ V(K) and thus the above sum
can be bounded as

rnV(E)
n− 1

n
≤

n−2∑
k=0

Wk+2(K;E)
rk+2

(k + 1)(k + 2)
≤ V(K)

n− 1
n

.

Then it is clear that inequality (3.3) strengthens Wills’ conjecture inequality:

0 ≥ V(K)− nW1(K;E)r + n

n−2∑
k=0

Wk+2(K;E)
rk+2

(k + 1)(k + 2)

≥ V(K)− nW1(K;E)r + nrnV(E)
n−2∑
k=0

1
(k + 1)(k + 2)

= V(K)− nW1(K;E)r + (n− 1)rnV(E).

Notice that if K = rK∗ (in particular, in this case K−r is a point) then
we have equality. The condition K = rK∗ is satisfied if and only if K is a
tangential body of E.
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Next we will prove Theorem 2.4. Its proof follows the ideas of the proof
of [6, Theorem 4] which will be obtained as a corollary.

Proof of Theorem 2.4. First we prove the inequality
(3.4)
W1(K;E)−W1(K−r + rK∗;E) ≥ W1(Kλ;E)−W1(K−r + (r + λ)K∗;E).

Writing K−r + rK∗ = K−r + (r + λ)K∗ + |λ|K∗, we can compute the
quermassintegral W1(K−r + rK∗;E) as follows:

W1(K−r + rK∗;E)

=
n−1∑
j=0

(
n− 1

j

)
V
(
K−r + (r + λ)K∗

[j],K∗
[n−j−1], E

)
|λ|n−j−1 .

The right hand side can be rewritten as

W1(K−r + (r + λ)K∗;E)

+
n−2∑
j=0

(
n− 1

j

)
V
(
K−r + (r + λ)K∗

[j],K∗
[n−j −1], E

)
|λ|n−j−1 .

Thus, the following holds

W1(K;E) + W1(K−r + (r + λ)K∗;E)−W1(K−r + rK∗;E)

=W1(K;E)−
n−2∑
j=0

(
n−1

j

)
V
(
K−r+(r+λ)K∗

[j],K∗
[n−j−1], E

)
|λ|n−j−1 ,

and hence it is enough to prove that

W1(K;E)−
n−2∑
j=0

(
n− 1

j

)
V
(
K−r + (r + λ)K∗

[j],K∗
[n−j −1], E

)
|λ|n−j−1

≥ W1(Kλ;E).

(3.5)

The monotonicity of the mixed volumes together with (2.2) yield

W1(K;E)−
n−2∑
j=0

(
n− 1

j

)
V
(
K−r + (r + λ)K∗

[j],K∗
[n−j −1], E

)
|λ|n−j−1

≥ W1(K;E)−
n−2∑
j=0

(
n− 1

j

)
V
(
Kλ[j],K∗

[n−j −1], E
)
|λ|n−j−1

= W1(K;E) + W1(Kλ;E)

−
n−1∑
j=0

(
n− 1

j

)
V
(
Kλ[j],K∗

[n−j −1], E
)
|λ|n−j−1

= W1(K;E) + W1(Kλ;E)−W1(Kλ + |λ|K∗;E) ≥ W1(Kλ;E)
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because K ⊇ Kλ + |λ|K∗. This proves (3.5) and hence (3.4). Notice that if
K = K−r + rK∗ (cf. [13, Theorem 2.2]), then inequality (3.4) becomes an
equality.

Now, integrating (3.4) and using (2.3) we get, for −r ≤ λ ≤ 0, that

1
n

V(Kλ) =
∫ λ

−r
W1(Kµ;E)dµ

≤
∫ λ

−r

[
W1(K;E) + W1(K−r + (r + µ)K∗;E)−W1(K−r + rK∗;E)

]
dµ.

Using again the linearity of mixed volumes for W1(K−r + rK∗;E) and
W1

(
K−r + (r + λ)K∗;E

)
, the previous inequality becomes

1
n

V(Kλ) ≤ (r + λ)W1(K;E)

− (r + λ)
n−1∑
j=0

(
n− 1

j

)
V
(
K−r[j],K

∗
[n−j −1], E

)
rn−j−1

+
n−1∑
j=0

(
n− 1

j

)
V
(
K−r[j],K

∗
[n−j −1], E

) ∫ λ

−r
(r + µ)n−j−1dµ.

Computing the integral it follows that
1
n

V(Kλ) ≤ W1(K;E)(r + λ)

+
n−1∑
j=0

(
n−1

j

)
V
(
K−r[j],K

∗
[n−j −1], E

)[(r+λ)n−j

n− j
− (r+λ)rn−j−1

]
,

which ends the proof of (2.7).
Sufficient conditions for the equality case in (3.4) provide sufficient con-

ditions for equality in (2.7). Thus, if K = K−r + rK∗, we get equality for
all −r ≤ λ ≤ 0. �
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[18] J. Steiner, Über parallele Flächen, Monatsber. Preuss. Akad. Wiss. (1840), 114–118,
[Ges. Werke, Vol II (Reimer, Berlin, 1882) 245–308].
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